Risposta:
Spiegazione:
La forma di vertice di una parabola può essere espressa come
o
Dove
La formula della distanza è
Chiamiamo
La moltiplicazione incrociata dà
La forma finale, vertice è quindi,
Qual è l'equazione di una parabola con un focus a (-2, 6) e un vertice a (-2, 9)? Cosa succederebbe se il focus e il vertice fossero commutati?
L'equazione è y = -1 / 12 (x + 2) ^ 2 + 9. L'altra equazione è y = 1/12 (x + 2) * 2 + 6 Il fuoco è F = (- 2,6) e il vertice è V = (- 2,9) Pertanto, la direttrice è y = 12 come il vertice è il punto medio dal fuoco e la direttrice (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsiasi punto (x, y) sulla parabola è equidistante dal fuoco e la direttrice y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 grafico {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47
Qual è la forma del vertice dell'equazione della parabola con un focus su (0, -15) e una direttrice di y = -16?
La forma del vertice di una parabola è y = a (x-h) + k, ma con ciò che viene dato è più facile iniziare osservando la forma standard, (x-h) ^ 2 = 4c (y-k). Il vertice della parabola è (h, k), la direttrice è definita dall'equazione y = k-c, e il fuoco è (h, k + c). a = 1 / (4c). Per questa parabola, la messa a fuoco (h, k + c) è (0, "-" 15) quindi h = 0 e k + c = "-" 15. La direttrice y = k-c è y = "-" 16 so k-c = "-" 16. Ora abbiamo due equazioni e possiamo trovare i valori di k e c: {(k + c = "-" 15), (kc = "-" 16
Qual è la forma del vertice dell'equazione della parabola con un focus su (11,28) e una direttrice di y = 21?
L'equazione di parabola in forma di vertice è y = 1/14 (x-11) ^ 2 + 24,5 Il vertice è equidistante dalla messa a fuoco (11,28) e dalla direttrice (y = 21). Quindi il vertice è a 11, (21 + 7/2) = (11,24.5) L'equazione di parabola in forma di vertice è y = a (x-11) ^ 2 + 24,5. La distanza del vertice da directrix è d = 24,5-21 = 3,5 Sappiamo, d = 1 / (4 | a |) o a = 1 / (4 * 3,5) = 1 / 14. Dal momento che Parabola si apre, 'a' è + ive. Quindi l'equazione di parabola in forma di vertice è y = 1/14 (x-11) ^ 2 + 24,5 grafico {1/14 (x-11) ^ 2 + 24,5 [-160, 160, -80, 80]} [ A