Risposta:
150 a $ 3 e 200 a $ 5
Spiegazione:
Abbiamo venduto un numero, x, di $ 5 biglietti e un certo numero, y, di $ 3 biglietti. Se abbiamo venduto 350 biglietti in totale x + y = 350. Se abbiamo totalizzato $ 1450 in vendite di biglietti, la somma di y biglietti a $ 3 più x biglietti a $ 5 deve essere uguale a $ 1450.
Così, $ 3y + $ 5x = $ 1450
e x + y = 350
Risolvi il sistema di equazioni.
3 (350 x) + 5 x 1450
1050 -3x + 5x = 1450
2x = 400 -> x = 200
y + 200 = 350 -> y = 150
Risposta:
Spiegazione:
Per questa domanda puoi impostare alcune equazioni. Useremo la variabile
La nostra equazione sarà
Possiamo anche dire
Da qui, possiamo sostituire
Ora che abbiamo
Per controllare il tuo lavoro, sostituisci
I biglietti per gli studenti costano $ 6,00 in meno rispetto ai biglietti di ammissione generale. L'importo totale raccolto per i biglietti per gli studenti era di $ 1800 e per i biglietti di ammissione generale, $ 3000. Qual era il prezzo di un biglietto d'ingresso generale?
Da quello che posso vedere, questo problema non ha alcuna soluzione unica. Chiama il costo di un biglietto per adulti x e il costo di un biglietto per studenti y. y = x - 6 Ora, lasciamo che il numero di biglietti venduti sia a per gli studenti e b per gli adulti. ay = 1800 bx = 3000 Restiamo con un sistema di 3 equazioni con 4 variabili che non ha una soluzione unica. Forse alla domanda manca un pezzo di informazione ??. Per favore mi faccia sapere. Speriamo che questo aiuti!
Stai vendendo biglietti per un concerto. I biglietti per gli studenti costano $ 5 e gli adulti costano $ 7. Vendi 45 biglietti e riscuoti $ 265. Quanti di ogni tipo hai venduto?
Il numero di biglietti per adulti e studenti venduti sono rispettivamente 20 e 25. Lascia che sia il numero di biglietti per adulti venduti a, quindi, il numero di biglietti per studenti venduti sarà s = 45-a La raccolta totale è 7 a + (45-a) * 5 = 265 o 7 a - 5 a + 225 = 265 o 2 a = 265-225 o 2 a = 40:. a = 40/2 = 20:. s = 45-a = 45-20 = 25 Numero di biglietti per adulti e studenti venduti sono rispettivamente 20 e 25. [Ans]
La tua scuola ha venduto 456 biglietti per un'opera di scuola superiore. Un biglietto per adulti costa $ 3,50 e un biglietto per studenti costa $ 1. Le vendite totali dei biglietti sono state pari a $ 1131. Come si scrive un'equazione per la vendita dei biglietti?
Chiamiamo il numero di biglietti per adulti A Quindi il numero di biglietti per studenti sarà 456-A, in quanto devono aggiungere fino a 456. Ora le vendite totali sono $ 1131. L'equazione sarà: Axx $ 3,50 + (456-A) xx $ 1,00 = $ 1131, o: Axx $ 3,50 + $ 456-Axx $ 1,00 = $ 1131 Riorganizzare e sottrarre $ 456 su entrambi i lati: A ($ 3,50- $ 1,00) + annulla ($ 456) -cancel ($ 456) = $ 1131- $ 456, o: Axx $ 2,50 = $ 675-> A = ($ 675) / ($ 2,50) = 270 Conclusione: sono stati venduti 270 biglietti per adulti e 456-270 = 186 biglietti per studenti. Dai un'occhiata! 270xx $ 3,50 + 186xx $ 1,00 = $ 1131