
Risposta:
Il numero è
Spiegazione:
La differenza tra due numeri si ottiene sottraendo.
Cerca la parola 'AND' per identificare quali numeri vengono sottratti.
La differenza tra 9 e 4 è data come
Un numero diviso per
La differenza tra (un numero diviso per 8) AND 2 verrebbe scritto come
La risposta è
Il numero è
quando
Il numero di un anno passato è diviso per 2 e il risultato è capovolto e diviso per 3, poi a sinistra a destra verso l'alto e diviso per 2. Quindi le cifre nel risultato sono invertite per fare 13. Qual è l'anno passato?

Color (red) (1962) Ecco i passaggi descritti: {: ("anno", colore (bianco) ("xxx"), rarr ["risultato" 0]), (["risultato" 0] div 2 ,, rarr ["risultato" 1]), (["risultato" 1] "capovolto" ,, rarr ["risultato" 2]), (["risultato" 2] "diviso per" 3,, rarr ["risultato "3]), ((" left right-side up ") ,, (" nessun cambiamento ")), ([" result "3] div 2,, rarr [" result "4]), ([" result " 4] "cifre invertite" ,, rarr ["risultato" 5] = 13):} Ritorno all'i
La somma di due numeri consecutivi è 77. La differenza di metà del numero più piccolo e di un terzo del numero più grande è 6. Se x è il numero più piccolo y è il numero più grande, che due equazioni rappresentano la somma e la differenza di i numeri?

X + y = 77 1 / 2x-1 / 3y = 6 Se vuoi conoscere i numeri che puoi continuare a leggere: x = 38 y = 39
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?

Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5