Risposta:
la larghezza è 8 e la lunghezza è 10
Spiegazione:
Il volume della scatola è dato da
lunghezza larghezza altezza
Pertanto è necessario risolvere l'equazione
o l'equivalente
Poiché x deve essere positivo, il suo valore è 8
Così
la larghezza è 8 e la lunghezza è 10
La lunghezza di un rettangolo è 3 volte la sua larghezza. Se la lunghezza fosse aumentata di 2 pollici e la larghezza di 1 pollice, il nuovo perimetro sarebbe 62 pollici. Qual è la larghezza e la lunghezza del rettangolo?
La lunghezza è 21 e la larghezza è 7 Io uso l per la lunghezza ew per la larghezza Innanzitutto è dato che l = 3w Nuova lunghezza e larghezza è l + 2 e w + 1 rispettivamente Anche il nuovo perimetro è 62 Quindi, l + 2 + l + 2 + w + 1 + w + 1 = 62 or, 2l + 2w = 56 l + w = 28 Ora abbiamo due relazioni tra la e w Sostituisci il primo valore di l nella seconda equazione Otteniamo, 3w + w = 28 4w = 28 w = 7 Mettere questo valore di w in una delle equazioni, l = 3 * 7 l = 21 Quindi la lunghezza è 21 e la larghezza è 7
La larghezza di un campo da calcio deve essere compresa tra 55 yd e 80 yd. Quale disuguaglianza composta rappresenta la larghezza di un campo di calcio? Quali sono i possibili valori per la larghezza del campo se la larghezza è un multiplo di 5?
La disuguaglianza composta che rappresenta la larghezza (W) di un campo da calcio con le clausole è la seguente: 55yd <W <80yd I valori possibili (multipli di 5yd) sono: 60, 65, 70, 75 La disuguaglianza indica che il valore di W è variabile e può trovarsi tra 55yd e 80yd, la definizione del possibile intervallo per W. I due <segni sono rivolti nella stessa direzione che indica un intervallo chiuso per W. 'Between' implica che i valori finali NON sono inclusi, 'From' implica che i valori finali sono inclusi. La disuguaglianza composta in questo caso stabilisce che né il valore in
Qual è il tasso di variazione della larghezza (in ft / sec) quando l'altezza è di 10 piedi, se l'altezza diminuisce in quel momento al ritmo di 1 ft / sec. Un rettangolo ha un'altezza variabile e una larghezza variabile , ma l'altezza e la larghezza cambiano in modo che l'area del rettangolo sia sempre di 60 piedi quadrati?
La velocità di variazione della larghezza con il tempo (dW) / (dt) = 0.6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Quindi (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Quindi (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Quindi quando h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"