Risposta:
Spiegazione:
# "data una parabola in" colore (blu) "forma standard"; ax ^ 2 + bx + c #
# "quindi la coordinata x del vertice è" #
# • colore (bianco) (x) x_ (colore (rosso) "vertice") = - b / (2a) #
# x ^ 2-3x-21 "è in formato standard" #
# "con" a = 1, b = -3 "e" c = -21 #
#x _ ("vertice") = - (- 3) / 2 = 3/2 #
# "sostituisci questo valore nell'equazione per y" #
#y _ ("vertice") = (3/2) ^ 2-3 (3/2) -21 = -93/4 #
#color (magenta) "vertice" = (3/2, -93 / 4) #
Supponiamo che una parabola abbia il vertice (4,7) e passi anche attraverso il punto (-3,8). Qual è l'equazione della parabola in forma di vertice?
In realtà, ci sono due parabole (di forma a vertice) che soddisfano le tue specifiche: y = 1/49 (x- 4) ^ 2 + 7 e x = -7 (y-7) ^ 2 + 4 Ci sono due forme di vertice: y = a (x- h) ^ 2 + k e x = a (yk) ^ 2 + h dove (h, k) è il vertice e il valore di "a" può essere trovato usando un altro punto. Non abbiamo alcun motivo per escludere una delle forme, quindi sostituiamo il vertice dato in entrambi: y = a (x- 4) ^ 2 + 7 e x = a (y-7) ^ 2 + 4 Risolvi per entrambi i valori di un punto (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 e -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 e - 7 = a_2 (1) ^ 2 a_1 = 1/49 e a_2 = -7 Ecco le
Qual è l'equazione di una parabola con un focus a (-2, 6) e un vertice a (-2, 9)? Cosa succederebbe se il focus e il vertice fossero commutati?
L'equazione è y = -1 / 12 (x + 2) ^ 2 + 9. L'altra equazione è y = 1/12 (x + 2) * 2 + 6 Il fuoco è F = (- 2,6) e il vertice è V = (- 2,9) Pertanto, la direttrice è y = 12 come il vertice è il punto medio dal fuoco e la direttrice (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsiasi punto (x, y) sulla parabola è equidistante dal fuoco e la direttrice y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 grafico {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47
Un triangolo ha i vertici A, B e C.Il vertice A ha un angolo di pi / 2, il vertice B ha un angolo di (pi) / 3, e l'area del triangolo è 9. Qual è l'area dell'incircle del triangolo?
Area cerchio inscritta = 4.37405 unità quadrate "" Risolvi per i lati del triangolo usando l'Area data = 9 e gli angoli A = pi / 2 e B = pi / 3. Utilizzare le seguenti formule per Area: Area = 1/2 * a * b * sin C Area = 1/2 * b * c * sin A Area = 1/2 * a * c * sin B in modo da avere 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Soluzione simultanea usando queste equazioni risultato a a = 2 * root4 108 b = 3 * root4 12 c = root4 108 risolve metà del perimetro ss = (a + b + c) /2=7.62738 Utilizzando questi lati a, b, c, e s del triangolo , risolvi per r