Risposta:
Spiegazione:
# "per calcolare la pendenza m utilizzare la formula sfumatura" colore (blu) "#
# • colore (bianco) (x) = m (y_2-y_1) / (x_2-x_1) #
# "let" (x_1, y_1) = (4,17) "and" (x_2, y_2) = (2, a) #
# RArrm = (A-17) / (2-4) = (A-17) / (- 2) #
# "ci viene dato che" m = 6 #
# "quindi equiparare i due e risolvere per un" #
#rArr (A-17) / (- 2) = 6 #
# "moltiplicare entrambi i lati per" -2 #
#cancel (-2) xx (A-17) / annullare (-2) = - 2xx6 #
# RArra-17 = -12 #
# "aggiungi 17 su entrambi i lati" #
#acancel (-17) cancel (17) = - 12 + 17 #
# RArra = 5 #
Le coordinate per un rombo sono date come (2a, 0) (0, 2b), (-2a, 0) e (0.-2b). Come si scrive un piano per dimostrare che i punti medi dei lati di un rombo determinano un rettangolo utilizzando la geometria delle coordinate?
Vedi sotto. Lascia che i punti di rombo siano A (2a, 0), B (0, 2b), C (-2a, 0) e D (0.-2b). Lasciate che i punti medi di AB siano P e le sue coordinate siano ((2a + 0) / 2, (0 + 2b) / 2) cioè (a, b). Allo stesso modo il punto medio di BC è Q (-a, b); il punto medio del CD è R (-a, -b) e il punto medio di DA è S (a, -b). È evidente che mentre P si trova in Q1 (primo quadrante), Q si trova in Q2, R in Q3 e S in Q4. Inoltre, P e Q si riflettono l'un l'altro nell'asse y, Q e R si riflettono l'un l'altro nell'asse x, R e S sono riflessi l'uno nell'asse y e S e P sono rifl
Tre punti che non sono su una linea determinano tre linee. Quante linee sono determinate da sette punti, di cui tre non sono su una linea?
21 Sono sicuro che c'è un modo più analitico e teorico per procedere, ma ecco un esperimento mentale che ho fatto per trovare la risposta per il caso dei 7 punti: Disegna 3 punti agli angoli di un triangolo equilatero. Puoi facilmente convincerti che determinano 3 linee per connettere i 3 punti. Quindi possiamo dire che c'è una funzione, f, tale che f (3) = 3 Aggiungi un quarto punto. Disegna le linee per connettere tutti e tre i punti precedenti. Hai bisogno di altre 3 linee per farlo, per un totale di 6. f (4) = 6. Aggiungi un 5 ° punto. connettersi a tutti e 4 i punti precedenti. Hai bisogno
La linea A e la linea B sono parallele. La pendenza della linea A è -2. Qual è il valore di x se la pendenza della Linea B è 3x + 3?
X = -5 / 3 Sia m_A e m_B siano i gradienti delle linee A e B rispettivamente, se A e B sono paralleli, quindi m_A = m_B Quindi, sappiamo che -2 = 3x + 3 Dobbiamo riorganizzare per trovare x - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Dimostrazione: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A