
Permettere
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?

Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Una particella viene lanciata su un triangolo da un'estremità di una base orizzontale e sfiorando le vertici cade all'altra estremità della base. Se alfa e beta sono gli angoli di base e theta è l'angolo di proiezione, Dimostra che tan theta = tan alfa + tan beta?

Dato che una particella viene lanciata con angolo di proiezione theta su un triangolo DeltaACB da una sua estremità A della base orizzontale AB allineata lungo l'asse X e infine cade all'altra estremità B della base, sfiorando il vertice C (x, y) Sia la velocità di proiezione, T sia il tempo di volo, R = AB sia l'intervallo orizzontale e sia il tempo impiegato dalla particella per raggiungere C (x, y) La componente orizzontale della velocità di proiezione - > ucostheta La componente verticale della velocità di proiezione -> usintheta Considerando il moto in gravità senza alcu
Mostra che, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?

Vedi sotto. Sia 1 + costheta + isintheta = r (cosalpha + isinalpha), qui r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) e tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) o alpha = theta / 2 quindi 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) e possiamo scrivere (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usando il teorema di DE MOivre come r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2 ^ nc