Risposta:
La risposta è
Spiegazione:
La base canonica è
L'altra base è
La matrice del cambiamento di base da
Il vettore
relativo alla base
Verifica:
Perciò,
Vettore A = 125 m / s, 40 gradi a nord di ovest. Il vettore B è 185 m / s, 30 gradi a sud ovest e il vettore C è 175 m / s 50 a est del sud. Come trovi A + B-C con il metodo di risoluzione vettoriale?
Il vettore risultante sarà 402.7m / s con un angolo standard di 165.6 ° Innanzitutto, risolverai ogni vettore (dato qui in forma standard) in componenti rettangolari (xey). Quindi, si sommeranno i componenti x e si sommeranno i componenti y. Questo ti darà la risposta che cerchi, ma in forma rettangolare. Infine, converti il risultato in forma standard. Ecco come: Resolve in componenti rettangolari A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s B_x = 185 cos (-150 °) = 185 (-0,866) = -160,21 m / s B_y = 185 sin (-150 °) = 185 (-0,5) = -9
Sia mathcal {B} = {[[-2], [- 1]] [[3], [4]]} = {vecv_1, vecv_2} trova [vecx] _ mathcal {E} Sapendo che [vecx] _ mathcal {B} = [[-5], [3]]?
(19,17). vecx è stato rappresentato come (-5,3) usando i vettori di base vecv_1 = (- 2, -1) e vecv_2 = (3,4). Quindi, usando la solita base standard, vecx = -5vecv_1 + 3vecv_2, = -5 (-2, -1) +3 (3,4), = (10,5) + (9,12), = (19, 17).
Lascia che l'angolo tra due vettori diversi da zero A (vettore) e B (vettore) sia 120 (gradi) e sia risultante C (vettore). Quindi quale dei seguenti è (sono) corretto?
Opzione (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad quadrato abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad triangolo abs (bbA - bbB) ^ 2 - C ^ 2 = triangolo - quadrato = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)