Risposta:
Crescente
Spiegazione:
Per trovare se una funzione
Se
Se
Se
Come provare (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Vedi sotto. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Qualcuno può aiutare a verificare questa identità trigonometrica? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Si verifica di seguito: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (cancel ((sinx + cosx) ) (sinx + cosx)) / (cancel ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => colore (verde) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2
Dimostralo: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Prova sotto usando i coniugati e la versione trigonometrica del Teorema di Pitagora. Parte 1 sqrt ((1-cosx) / (1 + cosx)) colore (bianco) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) colore (bianco) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) colore (bianco) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Parte 2 Analogamente sqrt ((1 + cosx) / (1-cosx) colore (bianco) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Parte 3: Combina i termini sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) colore (bianco) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1