Risposta:
Spiegazione:
Inserisci questi valori nell'equazione specificata
Usato l'identità
Come si converte y = 3x ^ 2-5x-y ^ 2 in un'equazione polare?
R = - (sintheta + 5costheta) / (sin ^ 2theta-3cos ^ 2theta) Per questo abbiamo bisogno del seguente: x = rcostheta y = rsintheta rsintheta = 3 (rcostheta) ^ 2-5 (rcostheta) - (rsintheta) ^ 2 rsintheta = 3r ^ 2cos ^ 2theta-5rcostheta-r ^ 2sin ^ 2theta rsintheta + r ^ 2sin ^ 2theta = 3r ^ 2cos ^ 2theta-5rcostheta sintheta + rsin ^ 2theta = 3rcos ^ 2theta-5costheta rsin ^ 2theta-3rcos ^ 2theta = - sintheta-5costheta r = (- sintheta-5costheta) / (sin ^ 2theta-3cos ^ 2theta) = - (sintheta + 5costheta) / (sin ^ 2theta-3cos ^ 2theta)
Come si converte y = 2y ^ 2 + 3x ^ 2-2xy in un'equazione polare?
R = sintheta / (2sin ^ 2theta + 3cos ^ 2theta-sin (2theta)) Per questo avremo bisogno di: x = rcostheta y = rsintheta rsintheta = 2 (rsintheta) ^ 2 + 3 (rcostheta) ^ 2-2 (rcostheta) (rsintheta) rsintheta = 2r ^ 2sin ^ 2theta + 3r ^ 2cos ^ 2theta-2r ^ 2costhetasintheta sintheta = 2rsin ^ 2theta + 3rcos ^ 2theta-2rcosthetasintheta sintheta = 2rsin ^ 2theta + 3rcos ^ 2theta-rsin (2theta) sintheta = r (2sin ^ 2theta + 3cos ^ 2theta-sin (2theta)) r = sintheta / (2sin ^ 2theta + 3cos ^ 2theta-sin (2theta))
Come si converte 5y = x -2xy in un'equazione polare?
R = (costheta-5sintheta) / (sin (2theta)) Per questo useremo le due equazioni: x = rcostheta, y = rsintheta 5rsintheta = rcostheta-2 (rcos theta) (rsintheta) 5rsintheta = rcostheta-2r ^ 2costhetasintheta 5sintheta = costheta-2rcosthetasintheta 2rcosthetasintheta = costheta-5sintheta r = (costheta-5sintheta) / (2costhetasintheta) r = (costheta-5sintheta) / (sin (2theta))