Risposta:
Spiegazione:
# "sottrarre x da entrambi i lati dell'equazione" #
= Annullare (x) annullare (-x) # # 2x-x-24
# RArrx-24 = 0 #
# "aggiungi 24 a entrambi i lati" #
#xcancel (-24) cancel (+24) = 0 + 24 #
# RArrx = 24 #
#color (blu) "Come assegno" # Sostituisci questo valore nell'equazione e se entrambi i lati sono uguali, allora è la soluzione.
# "left" = (2xx24) -24 = 48-24 = 24 #
# "right" = 24 #
# rArrx = 24 "è la soluzione" #
Risposta:
Spiegazione:
Possiamo iniziare sottraendo
Infine, possiamo aggiungere
Spero che questo ti aiuti!
Risposta:
Spiegazione:
Porta tutto il
Porta tutti i termini non x all'RHS, quindi aggiungi 24 a entrambi i lati
Come risolvete 7x + 15 = - 8 (- 7x - 8)?
X = -1 Espandi la parentesi: 7x + 15 = 56x + 64 Ottieni tutte le x su un lato (sottraendo 7x e sottraendo anche 64): -49 = 49x Dividi ogni lato di 49 x = -1
Supponi che g (x) = 5x ^ 4-15x ^ 2-32. Come risolvete l'equazione per x se g (x) = - 32? Che dire di g (x) = 58?
Caso 1: g (x) = - 32 colore rarr (verde) (x in {0, + - sqrt (93)}) Caso 2: g (x) = 58 colore rarr (verde) (x in {+ -sqrt (6), + - sqrt (3) i}) Dato: colore (blu) (g (x) = 5x ^ 4-15x ^ 2-32 Parte 1: colore (rosso) ("Se" g (x) = -32) colore (rosso) (- 32) = colore (blu) (5x ^ 4-15x ^ 2-32) colore rosso (blu) (5x ^ 4-15x ^ 2) = 0 rarr 5xxx ^ 2xx (x ^ 2-3) = 0 rarr {(x ^ 2 = 0, colore (bianco) ("X") orcolore (bianco) ("X"), x ^ 2-3 = 0), (rarrx = 0,, rarrx = + - sqrt (3)):} x in {-sqrt (3), 0, + sqrt (3)} Parte 2: colore (rosso) ("Se" g (x) = 58) colore (rosso) ( 58) = colore (blu) (5x ^
Quali operazioni matematiche sono necessarie per risolvere un problema come questo, e come lo risolvete ?:
D. 28 Il periodo del sistema a due luci sarà il minimo comune multiplo (LCM) dei periodi delle singole luci. Osservando la fattorizzazione primaria di 4 e 14, abbiamo: 4 = 2 * 2 14 = 2 * 7 Il LCM è il numero più piccolo che ha tutti questi fattori in almeno le molteplicità in cui si verificano in ciascuno dei numeri originali . Cioè: 2 * 2 * 7 = 28 Quindi il periodo del sistema sarà 28 secondi.