Risposta:
Ho trovato:
o
Spiegazione:
Chiama i tuoi numeri interi dispari:
e
Usando le tue condizioni abbiamo:
usando la formula quadratica:
così:
I nostri numeri possono essere:
se usiamo
e
se usiamo
e
Il prodotto di due interi dispari consecutivi è 1 meno di quattro volte la loro somma. Quali sono i due numeri interi?
Ho provato questo: chiama i due numeri interi dispari consecutivi: 2n + 1 e 2n + 3 abbiamo: (2n + 1) (2n + 3) = 4 [(2n + 1) + (2n + 3)] - 1 4n ^ 2 + 6n + 2n + 3 = 4 (4n + 4) -1 4n ^ 2-8n-12 = 0 Usiamo la formula di Qadratic per ottenere n: n_ (1,2) = (8 + -sqrt (64+ 192)) / 8 = (8 + -16) / 8 n_1 = 3 n_2 = -1 Quindi i nostri numeri possono essere: 2n_1 + 1 = 7 e 2n_1 + 3 = 9 o: 2n_2 + 1 = -1 e 2n_2 + 3 = 1
Il prodotto di due interi dispari consecutivi è 29 meno di 8 volte la loro somma. Trova i due numeri interi. Rispondere sotto forma di punti accoppiati con il più basso dei due numeri interi prima?
(13, 15) o (1, 3) Sia xe x + 2 siano i numeri consecutivi dispari, poi Come per la domanda, abbiamo (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 o 1 ora, CASO I: x = 13:. x + 2 = 13 + 2 = 15:. I numeri sono (13, 15). CASO II: x = 1:. x + 2 = 1+ 2 = 3:. I numeri sono (1, 3). Quindi, poiché qui si formano due casi; la coppia di numeri può essere sia (13, 15) o (1, 3).
"Lena ha 2 numeri interi consecutivi.Si accorge che la loro somma è uguale alla differenza tra i loro quadrati. Lena prende altri 2 numeri interi consecutivi e nota la stessa cosa. Dimostrare algebricamente che questo è vero per ogni 2 numeri interi consecutivi?
Si prega di fare riferimento alla Spiegazione. Ricorda che gli interi consecutivi differiscono di 1. Quindi, se m è un numero intero, allora, il numero intero successivo deve essere n + 1. La somma di questi due numeri interi è n + (n + 1) = 2n + 1. La differenza tra i loro quadrati è (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, come desiderato! Senti la gioia della matematica.!