Let's get in questo forma di pendenza del punto,
Questo ci dice che il
Possiamo controllarlo usando un grafico
grafico {y = -1 / 2x + 11/2}
Qual è l'equazione in forma di pendenza del punto e forma di intercettazione della pendenza della linea data pendenza 3/5 che passa attraverso il punto (10, -2)?
Forma pendenza del punto: y-y_1 = m (x-x_1) m = pendenza e (x_1, y_1) è la forma di intercettazione del punto: y = mx + c 1) y - (- 2) = 3/5 ( x-10) => y + 2 = 3/5 (x) -6 5y-3x-40 = 0 2) y = mx + c -2 = 3/5 (10) + c => - 2 = 6 + c => c = -8 (che può essere osservato anche dall'equazione precedente) y = 3/5 (x) -8 => 5y-3x-40 = 0
Scrivi la forma di pendenza del punto dell'equazione con la pendenza data che attraversa il punto indicato. A.) la linea con pendenza -4 che passa (5,4). e anche B.) la linea con la pendenza 2 che passa attraverso (-1, -2). per favore aiuto, questo confuso?
Y-4 = -4 (x-5) "e" y + 2 = 2 (x + 1)> "l'equazione di una linea in" colore (blu) "forma di pendenza del punto" è. • colore (bianco) (x) y-y_1 = m (x-x_1) "dove m è la pendenza e" (x_1, y_1) "un punto sulla linea" (A) "dato" m = -4 "e "(x_1, y_1) = (5,4)" sostituendo questi valori nell'equazione si ottiene "y-4 = -4 (x-5) larrcolor (blu)" in forma di pendenza del punto "(B)" dato "m = 2 "e" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blu) " in forma di
Se f (x) = 3x ^ 2 eg (x) = (x-9) / (x + 1) e x! = - 1, allora cosa sarebbe f (g (x)) uguale? g (f (x))? f ^ -1 (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per f (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = radice () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}