Risposta:
Spiegazione:
Come si differenzia f (x) = sqrt (cote ^ (4x) usando la regola della catena?
F '(x) = (- 4e ^ (4x) csc ^ 2 (e ^ (4x)) (lettino (e ^ (4x))) ^ (- 1/2)) / 2 colori (bianco) (f' (x)) = - (2e ^ (4x) csc ^ 2 (e ^ (4x))) / sqrt (lettino (e ^ (4x)) f (x) = sqrt (lettino (e ^ (4x))) colore (bianco) (f (x)) = sqrt (g (x)) f '(x) = 1/2 * (g (x)) ^ (- 1/2) * g' (x) colore (bianco ) (f '(x)) = (g' (x) (g (x)) ^ (- 1/2)) / 2 g (x) = lettino (e ^ (4x)) colore (bianco) (g (x)) = cot (h (x)) g '(x) = - h' (x) csc ^ 2 (h (x)) h (x) = e ^ (4x) colore (bianco) (h ( x)) = e ^ (j (x)) h '(x) = j' (x) e ^ (j (x)) j (x) = 4x j '(x) = 4 h' (x) = 4e ^ (4x) g '(x) = - 4e ^
Come si differenzia sqrt ((x + 1) / (2x-1))?
- (3 (x + 1)) / (2 (2x-1) ^ 2 sqrt ((x + 1) / (2x-1)) f (x) = u ^ n f '(x) = n xx ( du) / dx xxu ^ (n-1) In questo caso: sqrt ((x + 1) / (2x-1)) = ((x + 1) / (2x-1)) ^ (1/2): n = 1/2, u = (x + 1) / (2x-1) d / dx = 1/2 xx (1xx (2x-1) - 2xx (x + 1)) / (2x-1) ^ 2 xx ((x + 1) / (2x-1)) ^ (1 / 2-1) = 1 / 2xx (-3) / ((2x-1) ^ 2 xx ((x + 1) / (2x- 1)) ^ (1 / 2-1) = - (3 (x + 1)) / (2 (2x-1) ^ 2 ((x + 1) / (2x-1)) ^ (1/2)
Come si differenzia f (x) = sqrt (ln (1 / sqrt (xe ^ x)) usando la regola della catena.?
Regola la catena ancora e ancora. f '(x) = e ^ x (1 + x) / 4sqrt ((xe ^ x) / (ln (1 / sqrt (xe ^ x)) (xe ^ x) ^ 3)) f (x) = sqrt (ln (1 / sqrt (xe ^ x))) Ok, questo sarà difficile: f '(x) = (sqrt (ln (1 / sqrt (xe ^ x))))' = = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) * (ln (1 / sqrt (xe ^ x))) '= = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) * 1 / (1 / sqrt (xe ^ x)) (1 / sqrt (xe ^ x)) '= = 1 / (2sqrt (ln (1 / sqrt (xe ^ x)))) * sqrt (xe ^ x) (1 / sqrt (xe ^ x)) '= = sqrt (xe ^ x) / (2sqrt (ln (1 / sqrt (xe ^ x)))) (1 / sqrt (xe ^ x))' = = sqrt (xe ^ x) / (2sqrt (ln (1 / sqrt (xe ^ x)))) ((xe ^ x) ^