Qual è l'area di un rettangolo se un lato ha una lunghezza di 12x ^ 3 e l'altro lato ha una larghezza di 6x ^ 2?

Qual è l'area di un rettangolo se un lato ha una lunghezza di 12x ^ 3 e l'altro lato ha una larghezza di 6x ^ 2?
Anonim

Risposta:

L'area del rettangolo è # 72x ^ 5 #

Spiegazione:

La formula per l'area di un rettangolo è:

#A = l xx w #

Dove, #UN# è l'area, per cosa stiamo risolvendo in questo problema.

# L # è la lunghezza che è stata data come # 12x ^ 3 #

# W # è la larghezza che è stata data come # 6x ^ 2 #

Sostituendo questi valori si ottiene:

#A = 12x ^ 3 xx 6x ^ 2 #

La semplificazione dà:

#A = (12 xx 6) xx (x ^ 3 xx x ^ 2) #

Possiamo moltiplicare le costanti e usare la regola per gli esponenti per moltiplicare il #X# termini.

# y ^ colore (rosso) (a) xx y ^ colore (blu) (b) = y ^ (colore (rosso) (a) + colore (blu) (b)) #

Questo da:

#A = 72 xx (x ^ (3 + 2)) #

#A = 72 xx x ^ 5 #

#A = 72x ^ 5 #