Come si risolve il seguente sistema lineare: 6x + y = 3, 2x + 3y = 5?

Come si risolve il seguente sistema lineare: 6x + y = 3, 2x + 3y = 5?
Anonim

Risposta:

# x = 1/4, y = 3/2 #

Spiegazione:

In questo caso, possiamo usare la sostituzione, ma trovo che l'eliminazione è più semplice. Possiamo vedere che se facciamo un po 'di lavoro, sottrarre le due equazioni ci permetterà di risolvere # Y #.

# E_1: 6x + y = 3 #

# E_2: 2x + 3y = 5 #

# E_2: 3 (2x + 3y) = 3 * 5 #

# E_2: 6x + 9y = 15 #

# E_1-E_2: 6x + y- (6x + 9y) = 3-15 #

# 6x-6x + y-9y = -12 #

# -8y = -12 #

#y = (- 12) / (- 8) = 3/2 #

Ora colleghiamo la soluzione a # Y # in # # E_1 risolvere per #X#:

# E_1: 6x + 3/2 = 3 #

# 6x = 3-3 / 2 #

# 6x = 3/2 #

# X = (3/2) / 6 = 3/12 = 1/4 °