Risposta:
Spiegazione:
# 3 + i = sqrt (10) (cos (alpha) + i sin (alpha)) # dove#alpha = arctan (1/3) #
Così
#root (3) (3 + i) = root (3) (sqrt (10)) (cos (alpha / 3) + i sin (alpha / 3)) #
# = root (6) (10) (cos (1/3 arctan (1/3)) + i sin (1/3 arctan (1/3))) #
# = radice (6) (10) cos (1/3 arctan (1/3)) + radice (6) (10) sin (1/3 arcta (1/3)) i #
Da
Le altre due radici cubiche di
#omega (radice (6) (10) cos (1/3 arctan (1/3)) + radice (6) (10) sin (1/3 arcta (1/3)) i) #
# = radice (6) (10) cos (1/3 arctan (1/3) + (2pi) / 3) + radice (6) (10) sin (1/3 arcta (1/3) + (2pi) / 3) i #
# omega ^ 2 (radice (6) (10) cos (1/3 arctan (1/3)) + radice (6) (10) sin (1/3 arcta (1/3)) i) #
# = radice (6) (10) cos (1/3 arctan (1/3) + (4pi) / 3) + radice (6) (10) sin (1/3 arcta (1/3) + (4pi) / 3) i #