Risposta:
Spiegazione:
Dati due vettori non allineati
Il loro prodotto incrociato è calcolato dalla regola determinante, espandendo i sottodeterminanti con a capo
così
Quindi il vettore unitario è
Qual è il vettore unitario che è normale al piano contenente (2i - 3 j + k) e (2i + j - 3k)?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> Un vettore che è normale (ortogonale, perpendicolare) a un piano contenente due vettori è anche normale per entrambi i vettori dati. Possiamo trovare il vettore normale prendendo il prodotto incrociato dei due vettori dati. Possiamo quindi trovare un vettore unitario nella stessa direzione di quel vettore. Innanzitutto, scrivi ogni vettore in forma vettoriale: veca = <2, -3,1> vecb = <2,1, -3> Il prodotto incrociato, vecaxxvecb è trovato da: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) Per il componente i, abbiamo: (-3 *
Qual è il vettore unitario che è normale al piano contenente (- 3 i + j -k) e # (- 2i - j - k)?
Il vettore unitario è = <- 2 / sqrt30, -1 / sqrt30,5 / sqrt30> Calcoliamo il vettore perpendicolare agli altri 2 vettori facendo un prodotto incrociato, Lascia veca = <- 3,1, -1> vecb = <- 2, -1, -1> vecc = | (hati, hatj, hatk), (- 3,1, -1), (- 2, -1, -1) | = Hati | (1, -1), (- 1, -1) | -hatj | (-3, -1), (- 2, -1) | + hatk | (-3,1), (- 2 , -1) | = hati (-2) -hatj (1) + hatk (5) = <- 2, -1,5> Verifica veca.vecc = <- 3,1, -1>. <- 2, -1,5> = 6-1-5 = 0 vecb.vecc = <- 2, -1, -1>. <- 2, -1,5> = 4 + 1-5 = 0 Il modulo di vecc = || vecc || = || <-2, -1,5> || = sqrt (4 + 1 +
Qual è il vettore unitario che è normale al piano contenente (- 3 i + j -k) e (2i - 3 j + k)?
= (-2 cappello i + cappello j + 7 cappello k) / (3 sqrt (6)) lo farai calcolando il prodotto vettoriale trasversale di questi 2 vettori per ottenere il vettore normale in modo che vec n = (- 3 i + j -k) volte (2i - 3 j + k) = det [(cappello i, cappello j, cappello k), (-3,1, -1), (2, -3,1)] = cappello i (1 * 1 - (-3 * -1)) - cappello j (-3 * 1 - (-1 * 2)) + cappello k (-3 * -3 - 2 * 1)) = -2 cappello i + cappello j + 7 cappello k l'unità normale è cappello n = (-2 cappello i + cappello j + 7 cappello k) / (sqrt ((- 2) ^ 2 + 1 ^ 2 + 7 ^ 2)) = (-2 hat i + hat j + 7 hat k) / (3 sqrt (6)) è possibile control