Quale sarà la soluzione di questo? 3x ^ 2-6x + 8 = 0

Quale sarà la soluzione di questo? 3x ^ 2-6x + 8 = 0
Anonim

Risposta:

Vedi una soluzione qui sotto"

Spiegazione:

Possiamo usare l'equazione quadratica per risolvere questo problema:

La formula quadratica afferma:

Per #color (rosso) (a) x ^ 2 + colore (blu) (b) x + colore (verde) (c) = 0 #, i valori di #X# quali sono le soluzioni all'equazione sono date da:

#x = (-color (blu) (b) + - sqrt (colore (blu) (b) ^ 2 - (4colore (rosso) (a) colore (verde) (c)))) / (2 * colore (rosso) (a)) #

sostituendo:

#color (rosso) (3) # per #color (rosso) (a) #

#color (blu) (- 6) # per #color (blu) (b) #

#color (verde) (8) # per #color (verde) (c) # dà:

#x = (-color (blu) (- 6) + - sqrt (colore (blu) (- 6) ^ 2 - (4 * colore (rosso) (3) * colore (verde) (8)))) / (2 * colore (rosso) (3)) #

#x = (6 + - sqrt (36 - 96)) / 6 #

#x = 6/6 + - sqrt (-60) / 6 #

#x = 1 + - sqrt (4 * -15) / 6 #

#x = 1 + - (sqrt (4) sqrt (-15)) / 6 #

#x = 1 + - (2sqrt (-15)) / 6 #

#x = 1 + - sqrt (-15) / 3 #

Risposta:

# X = 1 + -1 / 3sqrt15i #

Spiegazione:

# "data un'equazione di secondo grado in" colore (blu) "forma standard" #

# • colore (bianco) (x) ax ^ 2 + bx + c = 0 #

# 3x ^ 2-6x + 8 = 0 "è in formato standard" #

# "con" a = 3, b = -6 "e" c = 8 #

# "controlla il valore del" colore (blu) "discriminante" #

# • colore (bianco) (x) = b Delta ^ 2-4ac #

#rArrDelta = (- 6) ^ 2- (4xx3xx8) = 36-96 = -60 #

# "poiché" Delta <0 "l'equazione non ha radici reali" #

# "ma avrà 2" colore (blu) "complesso coniugato radici" #

# "questi possono essere trovati usando la formula quadratica" colore (blu) "#

# • colore (bianco) (x) = x (- b + -sqrt (Delta)) / 6 #

# RArrx = (6 + -sqrt (-60)) / 6 = (6 + -2sqrt15i) / 6 #

# RArrx = 6/6 + - (2sqrt15i) / 6 = 1 + -1 / 3sqrt15i #