Risposta:
L'equazione della linea tangente
# 179x + 25Y = 188 #
Spiegazione:
Dato #f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) # a # X = 2 #
cerchiamo di risolvere il punto # (x_1, y_1) # primo
#f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) #
A # X = 2 #
#f (2) = (2) ^ 2-3 (2) + (3 (2) ^ 3) / (2-7) #
#f (2) = 4-6 + 24 / (- 5) #
#f (2) = (- 10-24) / 5 #
#f (2) = - 34/5 #
# (x_1, y_1) = (2, -34/5) #
Calcoliamo la pendenza con derivati
#f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) #
#f '(x) = 2x-3 + ((x-7) * 9x ^ 2- (3x ^ 3) * 1) / (x-7) ^ 2 #
pendenza # m = f '(2) = 2 (2) -3 + ((2-7) * 9 (2) ^ 2- (3 (2) ^ 3) * 1) / (2-7) ^ 2 #
# M = 4-3 + (- 180-24) / 25 #
# M = 1-204 / 25 = -179/25 #
L'equazione della linea tangente per forma punto-pendio
# Y-y_1 = m (x-x_1) #
#y - (- 34/5) = - 179/25 (x-2) #
# Y + 34/5 = -179 / 25 (x-2) #
# 25Y + 170 = -179 (x-2) #
# 25Y + 170 = -179x + 358 #
# 179x + 25Y = 188 #
Si prega di vedere il grafico di #f (x) = x ^ 2-3x + (3x ^ 3) / (x-7) # e # 179x + 25Y = 188 #
Dio benedica …. Spero che la spiegazione sia utile.