Sia D = a ^ 2 + b ^ 2 + c ^ 2 dove a e b sono numeri interi positivi successivi e c = ab. Come dimostrerai che sqrtD è un numero intero positivo dispari?
Risposta:
Vedi sotto
Spiegazione:
Fabbricazione # A = n # e #b = n + 1 # e sostituendo in
# a ^ 2 + b ^ 2 + a ^ 2b ^ 2 = n ^ 2 + (n + 1) ^ 2 + n ^ 2 (n + 1) ^ 2 #
che dà
# 1 + 2 n + 3 n ^ 2 + 2 n ^ 3 + n ^ 4 #
ma
# 1 + 2 n + 3 n ^ 2 + 2 n ^ 3 + n ^ 4 = (1 + n + n ^ 2) ^ 2 #