Risposta:
Vedi una soluzione qui sotto:
Spiegazione:
Innanzitutto, possiamo scrivere questa espressione in termini algebrici come:
Quindi possiamo usare questa regola di esponenti per semplificare l'espressione:
Il numero di un anno passato è diviso per 2 e il risultato è capovolto e diviso per 3, poi a sinistra a destra verso l'alto e diviso per 2. Quindi le cifre nel risultato sono invertite per fare 13. Qual è l'anno passato?
Color (red) (1962) Ecco i passaggi descritti: {: ("anno", colore (bianco) ("xxx"), rarr ["risultato" 0]), (["risultato" 0] div 2 ,, rarr ["risultato" 1]), (["risultato" 1] "capovolto" ,, rarr ["risultato" 2]), (["risultato" 2] "diviso per" 3,, rarr ["risultato "3]), ((" left right-side up ") ,, (" nessun cambiamento ")), ([" result "3] div 2,, rarr [" result "4]), ([" result " 4] "cifre invertite" ,, rarr ["risultato" 5] = 13):} Ritorno all'i
Che cosa è 4s oltre 3t alla 2a potenza negativa 2s oltre 6t alla 2a potenza? Il formato è un po 'strano.
1/16 ((4s) / (3t)) ^ (- 2) * ((2s) / (6t)) ^ 2 Prima quando viene dato un esponente negativo, ricambio l'espressione e rende l'esponente positivo, quindi: (( 3t) / (4s)) ^ (2) * ((2s) / (6t)) ^ 2 (3t) ^ 2 / (4s) ^ 2 * (2s) ^ 2 / (6t) ^ 2 ((3t) (3t)) / ((4s) (4s)) * ((2s) (2s)) / ((6t) (6t)) (9t ^ 2) / (16s ^ 2) * (4s ^ 2) / ( 36t ^ 2) Cross semplificare: (cancel (9t ^ 2)) / (cancel (16s ^ 2) 4) * (cancel (4s ^ 2)) / (cancel (36t ^ 2) 4) = 1/16
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5